MCDONNELL DOUGLAS McDonnell Aircraft Company 28 Sept 90 REGISTERED MAIL U.S. Environmental Protection Agency, Region VII Permits Section Waste Management Division 726 Minnesota Avenue Kansas City, KS 66101 Missouri Department of Natural Resources Permits Section Waste Management Program Division of Environmental Quality P.O. Box 176 Jefferson City, MO 65102 - Attach: (1) Modified Notification of Hazardous Waste Activity, McDonnell Aircraft Co., Tract I. - (2) Revised Tables, Waste Analysis Plan, Final Hazardous Waste Storage Permit, McDonnell Aircraft Co., Tract I. - 1. Because of the new TCLP test at 40 CFR 261.24, several hazardous wastes stored at McDonnell Aircraft's permitted Tract I storage facility will have a new TCLP waste code in addition to previous waste code(s). We are submitting a Class I permit modification request, as required by the 40 CFR 270.42 federal rule. We request that EPA provide its most recent facility mailing list, maintained under 40 CFR 124.10(c)(ix), so that we can make the required public notifications within 90 days. - 2. Missouri has not yet incorporated the TCLP test into its rules. Since the TCLP definition was promulgated under HSWA, it is our understanding that EPA will implement the TCLP rule until the state is authorized to do so. It is also our understanding from the March 29, 1990 preamble to the TCLP rule (55 FR 11848) that permit modifications needed to comply with the TCLP rule are governed by federal permit rules. - 3. The tables in our revised waste analysis plan incorporate the TCLP test, but also retain the EP toxic test, which is still part of Missouri rules. If you have questions about our modification request, please contact me at (314) 232-3319. Joseph Haake, Section Manager MCAIR Environmental Compliance Mail Stop 0801800 R00148172 RCRA RECORDS CENTER | | | | | | | | | | | | | | ELOL | A1 119 | | | 4 | | |---|---|---|--|--|--|--|---
--|---|--|--|---------|-------------------|-----------------|--|--|----------------------------|------------------------------| | | | | | | | | | | | | ID - F | OR OF | FICIA | | SE OI | NIY | 1 | _ | | | | | | | | | | C_ | | | | | T | | | | | T/A | | DESCRIPTION | 205 11434 | | | | | | | N | | 7.0 | | | | | _ | | | 12/2 | | X. DESCRIPTIO | N DE MAZAI | COS (E-Lie | VASTE | or the fo | مالد الماسي | | | | | | | Fall | | 7 | | Ш | | | | A. Wastes from 16:
source avoir inst | tallation handle | es. Below | each nu | mber, en | ur-aigit
ter mon | numbe
Ithiv ger | er from
neration | 40 CF | R Part | 261.3 | 1 for e | ach li | sted I | hazar | dous | waste | from | nonspe | | | | | , | - | | 1 | 1 | | T E | 0 | 1 7 | - | y coa | e A, E | 3, or (| <i>.</i> . | | | | WASTE I.D. NO. | . F 0 | 0 4 | 0 | | 8 | 0 | 2 0 | | F | ŏ | ŏ | 55 | | | F | 0 | 0 | 6 | | AMOUNT AND | | | | ٠, - | 1 | 1 - | | 7 | тр_ | -0 | 13 | 5 | Щ | | + | 0 | 1 | 9 | | FREQUENCY | 3800 | lbs. | Α | | 8300 | lbs. | . A | | 25, | 000 | lbs. | Α | | 20 | 0,00 | 00 | lba | Α | | | · | | - 0 | | | | | | | | | | | _ | | | lbs | | | B. Wastes from Spe | ecific Sources | (K-List). | Enter th | e four-di | git nun | nber fro | om 40 C | FR Pa | art 261. | 32 for | each | listed | hazar | dous | waste | e from | speci | fic sou | | your installation h | ialidies. Delov | / each nun | iber, en | ter the m | onthly (| generati | ion amo | unt in | pound | s and f | requen | су со | ie A, E | B, or (| C. | | | | | WASTE I.D. NO. | | | 1 | | | | | | | | 120 | | | | - [| | | = = | | AMOUNT AND | | | | | | 1 | | 7 7 |] | | <u> </u> | | Ц | $^{\perp}$ | | | 22 | | | FREQUENCY | | lbs. | | | |
lbs. | - | | | | lbs. | <u> </u> | | | ibs. | | | C. Commercial Chemi | ical Product W | estes (W ar | nd P List | s). Enter t | the four- | -digit nu | ımber fro | m 40 (| CFR Pa | rt 261. | 33 for e | ach ch | emica | subs | tance | vour i | nstallat | ion han | | which may be haza | TOOUS WASIE. D | elow each I | number, | enter the | monthly | genera | tion amo | unt in | pounds | and fr | equenc | y code | A, B, | or C. | | - 10 | | | | WASTE I.D. NO. | U 1 | 2 | 2 | U | 1 | 8 | 8 | | l u | 2 | 2 - | 3 | | | u | 2 | 0 | | | AMOUNT AND | | - - - | | ۲, - | 1 1 | 10 | 0 | ₁ ┌┴ | | | | 3 | L | حلم | U | 2 | 2 | 6 | | FREQUENCY | 1 | 0 lbs. | В | | = 1 | 0 lbs. | В | | | 10 | lbs. | В | | | | 10 | 15-0 | В | | | 1 | | | | | | | | | | Į. | | | <u> </u> | | | lbs. | | | D. (Reserved) | (| | | | | | | | | | 20 | | | | | | | 1 | | | . Characteristics of P
handles. (See 40 CF | Nonlisted Haza
FR Parts 261.21 | rdous Was
- 261.24) | ites. Mai
Below ei | rk an 'X' i | in the b | check, e | orrespondenter the | ding to | o the cl | haracte | eristics
amoun | of nor | listed | hazaı
in pou | rdous
ands a | waste: | s your
neration | installa
freque | | Characteristics of Phandles. (See 40 CF code A, B, or C. | | rdous Was
- 261.24)
IGNITAB
(D001) | | rk an 'X' i | in the b | check, e | orrespondenter the | montr | o the cl
hiy gene
CORRC
(D002 | SIVE | eristics | of nor | listed
essed i | in pou | rdous
unds a | nd gen | s your
neration
REAC | freque | | Characteristics of Mandles. (See 40 CF code A, B, or C. | 1. | IGNITAB
(D001) | | rk an 'X' i | in the b | check, e | enter the | montr | CORRC
(D002 | SIVE
) | amoun | of nor | listed
essed i | in pou | inds a | nd gen | REAC | TIVE | | Characteristics of Mandles. (See 40 CF code A, B, or C. | X 1. | IGNITAB
(D001)
lbs. | LE
B | Jack SOX II | iat you | CHECK, E | X X | 2. 0 | CORRO
(D002 | OSIVE
) | amoun | t expre | issed i | in pou | X | 3.
100 | REAC (D003 | TIVE | | Characteristics of Mandles. (See 40 CF code A, B, or C. | 30,000 | IGNITAB
(D001) | LE B | ur-digit n | umber | which i | X X | 2. 0 | CORRO
(D002 | OSIVE
) | amoun | t expre | issed i | in pou | X | 3.
100 | REAC (D003 | TIVE | | Characteristics of Phandles. (See 40 CF code A, B, or C. AMOUNT AND FREQUENCY | 30,000 | IGNITAB
(D001)
Ibs. | LE B | ur-digit n | umber | which i | X X | 2. 0 | CORRO
(D002 | OSIVE
) | amoun | t expre | issed i | low e | X each n | 3. | REAC (D003 | TIVE | | Characteristics of Phandles. (See 40 CF code A, B, or C. AMOUNT AND FREQUENCY | 30,000 | IGNITAB
(D001)
Ibs. | LE B | ur-digit n | umber | which i | X X | 2. 0 | CORRO
(D002 | OSIVE
) | amoun | t expre | issed i | low e | X Rach n | 3. | REAC (D003 | TIVE | | Characteristics of Phandles. (See 40 CF code A, B, or C. AMOUNT AND FREQUENCY | 30,000
30,000
4. TO
the | IGNITAB (D001) ibs. XIC Entermonthly g | LE the four | ur-digit n | umber | which i | X identifies cy. 7 | 2. 0 | CORRC (D002) O ibs | OSIVE) cterist | ic toxic | e wast | issed i | low e | X Rach n | 3. 100 numbe | REAC (D003 | TIVE | | Characteristics of Mandles. (See 40 CF code A, B, or C. AMOUNT AND FREQUENCY | 30,000
4. TO the | IGNITAB (D001) ibs. XIC Entermonthly g | LE B | ur-digit n | umber | which i | X X identifies by. | 2. 0 | CORRC (D002) O ibs | OSIVE) cterist | ic toxic | e wast | issed i | low e | X Rach n | 3. 100 numbe | REAC (D003) 0 Ibs | TIVE | | Characteristics of Mandles. (See 40 CF code A, B, or C. AMOUNT AND FREQUENCY | 30,000
30,000
4. TO
the | IGNITAB (D001) ibs. XIC Entermonthly g | the four | ur-digit non amour | umber nt and fi | which i requence | X dentifies by. | 2. C | CORRC
(D002
)0 lbs | OSIVE) cterist 0 | ic toxic | wast | issed i | low e | X Rach n | 3. 100 numbe | REAC (D003) 00 lbs | TIVE Ass. A | | AMOUNT AND FREQUENCY AMOUNT AND FREQUENCY | 30,000
30,000
4. TO
the
D 0 | IGNITAB (D001) ibs. XIC Enter monthly g | the forgeneration | ur-digit non amour | umber nt and fi | which is requence to the latest the latest term of | X identifies by 7 A RED II | 2. C | CORRO (D002) O ibs | OSIVE) cterist 0 | ic toxic | wast | issed i | low e | X Rach n | 3. 100 numbe | REAC (D003) 00 lbs | TIVE Ass. A | | Characteristics of Phandles. (See 40 CF code A, B, or C. AMOUNT AND FREQUENCY AMOUNT AND FREQUENCY | 30,000
30,000
4. TO
the
D 0 | IGNITAB (D001) ibs. XIC Enter monthly g | the forgeneration | ur-digit non amour | umber nt and fi | which is requence to the latest the latest term of | X identifies by 7 A RED II | 2. C | CORRC
(D002
)0 lbs | OSIVE) cterist 0 | ic toxic | wast | issed i | low e | X Rach n | 3. 100 numbe | REAC (D003) 00 lbs | TIVE) s. A | | AMOUNT AND FREQUENCY AMOUNT AND FREQUENCY | 30,000
X 4. TO
the
D 0 | IGNITAB (D001) ibs. XIC Entermonthly g 0 ibs. | the four | ur-digit non amour | umber nt and fi | which is requenced by the second seco | identifies
cy. 7 A RED II | 2. C | CORRC (D002) O ibs chara D RMA | OSIVE) cterist 0 | ic toxic | wast | issed i | low e | X Rach n | 3. 100 numbe | REAC (D003) 00 lbs | TIVE) s. A | | AMOUNT AND FREQUENCY AMOUNT AND FREQUENCY | 30,000
X 4. TO
the
D 0 | IGNITAB (D001) ibs. XIC Entermonthly g 0 ibs. | the four | ur-digit non amour | umber nt and fi | which is requenced by the second seco | identifies
cy. 7 A RED II | 2. C | CORRC (D002) O ibs chara D RMA | OSIVE) cterist 0 | ic toxic | wast | issed i | low e | X Rach n | 3. 100 numbe | REAC (D003) 00 lbs | TIVE) s. A | | AMOUNT AND FREQUENCY AMOUNT AND FREQUENCY AMOUNT AND FREQUENCY | 30,000 4. TO the D 0 10 RATOR ID N | IGNITAB (D001) ibs. XIC Entermonthly g ibs. | the forgeneration 6 B | gr-digit non amour D 90 MISSOL REVIOU | umber nt and fi | which is requenced by the second seco | identifies
cy. 7 A RED II NED) _ | 2. C 600 s each | CORRC (D002) O ibs chara D RMA | OSIVE) cterist 0 | ic toxic | wast | issed i | low e | X Rach n | 3. 100 numbe | REAC (D003) 00 lbs | TIVE) s. A | | AMOUNT AND FREQUENCY AMOUNT AND FREQUENCY AMOUNT AND FREQUENCY ISSOURI GENER RINCIPAL BUSIN 1.C. CODE (LEAV | 30,000 4. TO X 10 RATOR ID N NESS ACTIV | IGNITAB (D001) ibs. XIC Entermonthly g 0 ibs. | the forgeneration B Note: The property of | Jar-digit non amour D 90 MISSOL REVIOU Cary A | umber nt and find 0 JRI RI | which i requence 0 ibs. EQUII | identifies
cy. 7 A RED II NED) _ Manufa | 2. Co | CORRC (D002) O Ibs Chara D RMA 10001 | osive) cterist 0 10 | ic toxid | e wast | e. Bel | low e | X Rach n | 3. 100 numbe | REAC (D003) 00 lbs | TIVE) s. A | | AMOUNT AND FREQUENCY ISSOURI GENER RINCIPAL BUSIN 1.C. CODE (LEAV | 30,000 4. TO X 10 RATOR ID N NESS ACTIV | IGNITAB (D001) ibs. XIC Entermonthly g 0 ibs. | the forgeneration B Note: The property of | Jar-digit non amour D 90 MISSOL REVIOU Cary A | umber nt and find 0 JRI RI | which i requence 0 ibs. EQUII | identifies
cy. 7 A RED II NED) _ Manufa | 2. Co | CORRC (D002) O Ibs Chara D RMA 10001 | osive) cterist 0 10 | ic toxid | e wast | e. Bel | low e | X Rach n | 3. 100 numbe | REAC (D003) 00 lbs | TIVE S. A | | AMOUNT AND FREQUENCY ISSOURI GENER RINCIPAL BUSIN I.C. CODE (LEAV HECK THIS BOX | 30,000 4. TO X 10 RATOR ID N NESS ACTIV VE BLANK (IF YOU GE | IGNITAB (D001) ibs. XIC Entermonthly g 0 ibs. | the forgeneration B Note: The property of | Jar-digit non amour D 90 MISSOL REVIOU Cary A | umber nt and find 0 JRI RI | which i requence 0 ibs. EQUII | identifies
cy. 7 A RED II NED) _ Manufa | 2. Co | CORRC (D002) O Ibs Chara D RMA 10001 | osive) cterist 0 10 | ic toxid | e wast | e. Bel | low e | X Rach n | 3. 100 numbe | REAC (D003) 00 lbs | TIVE S. A | | AMOUNT AND FREQUENCY AMOUNT AND FREQUENCY IISSOURI GENER RINCIPAL BUSIN I.C. CODE (LEAV HECK THIS BOX Certify under penal ocuments, and that formation is true, e possibility of fine | 30,000 4. TO the D 0 10 RATOR ID N NESS ACTIV VE BLANK (IF YOU GE ION alty of law to the based on maccurate, a | IGNITAB (D001) ibs. XIC Entermonthly good ibs. NUMBER VITY IF UNCE ENERATION of the property | the four generation of the service person | Jur-digit non amour D 90 MISSOL REVIOU Cary A Onally e | umber nt and find 0 ,000 JRI RI SLY A ircra ATE LE xamine duals i ire that | which i requence of the second | X identifies identifies y A RED II NED) - danufa 3 7 HAN A | 2. Complete to the second seco | CORRC (D002) O Ibs chara D RMA 1001 Iring ORTA | cterist O 10 FION BLE (characterist) | ic toxid | 9 B | e. Bel | In pour | X X I I I I I I I I I I I I I I I I I I | 3. 100 numbe 0 0 0 | REAC (D003) 0 Ibs | TIVE TIVE A A A A | | AMOUNT AND FREQUENCY AMOUNT AND FREQUENCY AMOUNT AND FREQUENCY IISSOURI GENER RINCIPAL BUSIN I.C. CODE (LEAV HECK THIS BOX CERTIFICATI certify under penal brownents, and that formation is true, | 30,000 4. TO the D 0 10 RATOR ID N NESS ACTIV VE BLANK (IF YOU GE ION alty of law to the based on maccurate, a | IGNITAB (D001) ibs. XIC Entermonthly good ibs. NUMBER VITY IF UNCE ENERATION of the property | the four generation of the service person | Jur-digit non amour D 90 MISSOL REVIOU Cary A Onally e | umber nt and find 0 ,000 JRI RI SLY A ircra ATE LE xamine duals i ire that | which i requence of the second | X identifies identifies y A RED II NED) - fanufa 3 7 HAN A | 2. Complete to the second seco | CORRC (D002) O Ibs chara D RMA 1001 Iring ORTA | cterist O 10 FION BLE (characterist) | ic toxid | 9 B | e. Bel | In pour | X X in the control of | 3. 100 numbe 0 0 0 | REAC (D003) 0 Ibs | TIVE (1) | | AMOUNT AND FREQUENCY ISSOURI GENER RINCIPAL BUSIN I.C. CODE (LEAV HECK THIS BOX CERTIFICATI Certify under penal comments, and that formation is true, e possibility of fine | 30,000 4. TO the D 0 10 RATOR ID N NESS ACTIV VE BLANK (IF YOU GE ION alty of law to the based on maccurate, a | IGNITAB (D001) ibs. XIC
Entermonthly good ibs. NUMBER VITY IF UNCE ENERATION of the property | the four generation of the service person | Jur-digit non amour D 90 MISSOL REVIOU Cary A Onally e | umber nt and find 0 ,000 JRI RI SLY A ircra ATE LE xamine duals i ire that | which i requence to the second of | X identifies identifies y A RED II NED) - danufa 3 7 HAN A | 2. Company of the second th | CORRC (D002) O Ibs chara D RMAT 1001 Iring ORTA r with sible feant pe | DSIVE) cterist 10 FION BLE the irror objections of the property pro | O DUAN aformation for the saining and sain | 9 B | e. Bel | low e | in the | 3. 100 numbe 0 0 0 0 nis an elieve ormat | REAC (D003) 0 Ibs | TIVE TIVE TIVE TIVE TIVE | # MISSOURI DEPARTMENT OF NATURAL RESOURCES WASTE MANAGEMENT PROGRAM | 1 | - # | | · . | | J. D | Υ Λ Ι | DEF
76, J | EFF | ERS | ON C | F NA | ATUI | RAL
651 | RES | OUR | CES | , WA | STE | MA | NAG | EME | NT F | PRO | GRAN | A | _ | | | _ | | |--------------------|---|-----------------|----------------|----------------|-------------|------------------|-----------------|-------|---------------|-----------------|----------------|----------------|------------|---------|--------|--------|--------|-----------------|-----------|----------|--------------|--------|---------------|----------------|----------|----------|---------|----------------|-----------|----------| | FO | OF | FICI. | AL U | SEC | NL' | Ÿ | | | | | | | | | | | | _ | | - | | -4 | | | | - | - | المها | - | | | C | T- | T | 1 | T- | T- | \top | T | | 1 | 1. | 1 | _ | | COI | MME | NTS | 3 | _ | + | | _ | | | | | | | | | | | С | | | | | | | | | | 1 | | | | | | | | - | | | | | 1 | | | | 1 | | | | | 1 | | | | INST. | ALLA | TIOI | N'S E | PA IC | שא | MBEF | ₹ | | | | AF | PPRC | VED | 1 | DA
YR. | | RECE | | | | | | | <u></u> | | | | CF | | | - | T | | | T | T. | | | T | | T/A | ·C | ╁ | 1. | T | ╁ | T . | Γ | ио.
Т | T | AY | - | | | | | | | | | AME | OF I | NST. | ALLA | TIO | N | | | | | | | | 1 | | | | | | | | | | | | | | | | | | M | C | D | 0 | N | N | E | | Ι, | | А | T, | R | | | | T | - | | | 1 | T | - | | | | | | | | | | - | NSTA | | | | LINC | AD | DRE | SS | | JA | 1 | K | C | R | A | F | 11 | | C | 0 | | 1 | R | Α | С | T | | I | | | | - | 1 | | , | 1 | _ | _ | | | | | | STR | EET | OR P | .O. E | зох | NUMI | BER | - | | | | | | | | | | | | | 3 | P | 0 | | В | 0 | X | | 5 | 1 | 6 | | М | C | 0 | 8 | 0 | 1 | 8 | 0 | 0 | | | | | | | | | | | | C | | | | | | | | | | CITY | OR | - | | 10 | 10 | 10 | 1- | 0 | 0 | 0 | | 1 | | STA | TF | | 715 | o COI | DE | | | 4 | S | T | | | 0 | 111 | I | S | 301 | | | | III. L | OCA | TION | OF | INST | ALL | ATIC | N | | | | | | <u>'</u> | | | | 1 | | | <u> </u> | | | | М | 0 | 6 | 3 | 1 | 6 | 6 | | C | i i | | | | | T - | _ | 1 | T - | Т | | | STRE | ET A | ND | NUM | BER | | | | | | N.C. HORY THE | | | | | Marketon, 1983 | | - | | 5 | M | С | D | 0 | N | N | E | L | L | | Ά | N | D | | L | I | N | D | В | Ε | R | G | н | | В | | ٧ | D | | | | C | | | × | | | 1 | Г | | | CITY | OR | TOW | /N | | | | | | | | | | | STA | | | | COL | DE J | | | 6 | Н | Α | 7 | E | | W | 0 | 0 | D | | | | | | | | | | | | | | | м | 0 | 6 | 3 | 0 | 4 | 2 | | IV. II | VSTA | LLA. | TION | - | - | - | D TI | TLE | (I A S | T, FI | DOT | ANIE | 105 | 7.7.7 | | | | | | | | | | | <u> </u> | - | 3 | | 71 | - | | C | | | | | | | | | LAS | | 731, | ANL | 106 | 3 111 | LE) | | | | | | - | | TE | LEPH | CNE | NUI | MBE | R | | | | 2
V. O | WNEE | A | A | K. | F | | J | 0 | S | E | Р | Н | | S | E | С | | М | G | R | 3 | 1 | 4 | 2 | 3 | 2 | 3 | 3 | 1 | 9 | | | | | | | A. | NA | ME C | OF IN | STA | LLAT | ION | 'S LE | GAL | OW | NER | | | | | 1 | | | | | | | | | | | | C | M | | 0 | | | į | | | | | | | | | | | | T | | | \neg | B. 1 | YPE | OF O | WNE | RSH | iP (E | NTER | COI | DE) | | 1७. र | YPE C |)FRI | EGU | LATE | D W | AST | EAC | TIVI | TY () | MAR | D | O I | HE A | G | OPP | A | S | Es | C | 0 | R | | FP . | and | Р | | | | - | | | | | | ~ | HAZ | ARD | ous | WA | STE | ACT | IVITY | | | | 200 | OFR | T | ВОХ | ES | | | | | | ONS) | ITIE | <u> </u> | | - | - | _ | | X 1a | GENE | RATO | OR | | | | | | | 1b. LE | SS T | HAN 1 | ,000 K | G./M |) | | 6 OF | F-SPI | | | | | | | | | | | | \dashv | | 3. | TREAT | ER/S | TORE | R/DIS | POSE | ER | | | | | | | | | | | (enter | X 8 / | mark a | pprop | riate bo | oxes b | elow) | | | | | | | | | 14. | UNDE | RGRO | UND | INJEC | CTION | J | | | | | | | | | | | | OTH | HER M | OR N | MARKE
TER | TING | тов | URNE | R | | | | | | | 5 . | MAHK! | GEN | R BUR
ERAT | N HAZ
OR M/ | ARD
ARKE | OUS I | WAST | E FUE | L <i>(ent</i> | er 'X' & | mark | appro | priate t | oxes l | below) | | □ c. | BUR | NER | | • | | | | | | | | | 1 | | | □ в. | отн | ER M | ARKET | ER | | 100 | OMITE | n | | | | C. BI | URNE | R | ٢ | 7. SPI | ECIFI
IO FIF | CATIO | ON US | SED O | IL FU | EL MA | RKETI
THE S | ER (0 | RON | -SITE | BURN | VER) | | | VII. W | AST | FU | EL B | URN | NG: | TYP | E OF | COI | MBU | STIO | N DI | EVIC | E | - | | | | - | | - | | | _ | | _ | | | | Parition, | | | (EUES | 'X' | ii a | l ap | prop | riate | box | es t | o in | dica | ie tv | ne o | f co | mhu | stion | de. | ice(| s) in | whi | ch h | azar | dous | wa | ste f | uel o | or of | f-spe | ecific | atio | a uc | od | | oil fue
□:A. | | | | | | ction | s for | defi | | ns o | 0011 | nuua | HOH | OCAN | ues/ | | | | _ | | | | | | | | .01110 | allUi | i usi | 50 | | VIII. N | ODE | OF | TRA | NSPO |)RT/ | ATIO | N (T | RAN | SPO | RTER | so | NLY- | ENT | ER 'X | 'IN' | THE | APPF | OPF | RIAT | E BO | X(ES | JSTI | RIAL | FUR | NAC | E_ | | | _ | 4 | | □ A | AIR | | | | | RAI | | | | _ | . HI | | | | | | D. V | | | 200 | | | E. O | THE | R /S | PEC | IFY) | | | | | IX. FI | IST C | R S | UBSI | EQUE | NT | NOT | IFIC | ATIO | N | | | _ | | | | _ | | | | _ | 20.01 | - 27 | | - | | - | | | | - | | Mark ')
not you | C in ti
r first | ne ap
notifi | prop.
catio | riate t | oox t | o ind
ur inst | icate
allati | whetl | her ti | his is
D Num | your
iber i | insta
n the | llatio | n's fir | st no | tifica | ion o | haz | ardou | s wa | ste ac | tivity | or a | subse | quen | t not | ificati | on. If | this | is | | | your first notification, enter your installation's EPA ID Number in the space provided below. A. FIRST NOTIFICATION X B. SUBSEQUENT NOTIFICATION (COMPLETE ITEM C) | O 780-1 | | | | | | _ | _ | | | | | | | | | | - | " | M | 0 | D | 0 | 0 | 0 8 | В | 1 | 8 | 9 | 6 | 3 | | 4 | | | | | | | | | | | É | E | PA 870 | JU-12/I | MUNR | HWG | 1 | | | | | | | | 134 | CON | ITINU | E ON F | REVER | SE | | | | | | | | | | | | | | | D 50 | 0.55 | | 1105.6 | | | | |--|-----------------------|--------------------|--------------------|-------------------|-----------|---------------------|-------------------|--------------------|-------------------|-------------|-------------------|----------------------|-------------------|------------------|-------------------|---------------------|-------------|----------|--------------| | | | | | | | | | | | C_ | | | D - FO | ROFF | ICIAL | USE C | DNLY | | T/A C | | | | | | | | | | | | W | | | | | | | | | T/A _C1 | | X. DESCRIPTION | | | | | _ | | | | 1 11 | | | | • | | | | | M. | | | A. Wastes from Non-
sources your insta | specific
liation i | Sourc | es (F-L
Belov | v each | nter th | e four-
r, enter | -digit i
monti | numbe
nly gen | r from
eration | 40
ram | OFR Part | 261.31
ounds a | for ea | ch list
uency | code | zardou:
4. B. or | waste
C. | from r | nonspecific | | WASTE I.D. NO. | F | 0 | 0 | 9 | | = | | | | | - | | | | | | | | | | AMOUNT AND | <u> </u> | | | | ٦٢ | | | | | ገ | | <u> </u> | | |] | 1 | <u> </u> | | | | FREQUENCY | | 200 | | <u>B</u> | _ L | | | lbs. | <u> </u> | | | | lbs. | | | | | lbs. | | | B. Wastes from Spec
your installation ha | ific So | urces (
Below | K-List)
each ni | . Enter
umber, | the fo | ur-digi
he mor | t num | ber fro
enerati | m 40 (
on amo | CFR
ount | Part 261 in pound | .32 for
is and fr | each li
equend | sted h | azardo
e A, B, | or C. | ste from | speci | fic sources | | WASTE I.D. NO. | | | = | | | | | | | | | | | | | | | | - | | AMOUNT AND | | | lbs. | | 7 [| | | lbs. | | ٦. | | | lbs. | | | | | lbs. | | | C. Commercial Chemic | al Prod | uct Was | stes (W | and P I | Lists). E | nter th | e four- | digit nu | mber fi | | 10 CER P | art 261 3 | | ch che | mical | uhetan | co vous i | | | | which may be hazar | dous wa | ste. Be | low eac | h numb | er, ente | er the m | onthly | genera | tion am | oun | in pound | s and fre | quency | code | A, B, or | C. | Le your i | ristanat | ion nancies | | WASTE I.D. NO. | P | 0 | 3 | 0 | | Р | 1 | 0 | 6 | L | | | | | ¬ 1 | | | | | | FREQUENCY | | 10 | lbs. | В | | | 1 | 0 lbs. | В | | | | lbs. | | | | | lbs. | | | D. (Reserved) | E. Characteristics of N | ionlisted | d Hazar | dous W | /astes. | Mark a | n 'X' in | the b | oxes co | orrespo | ndin | g to the | characte | ristics | of noni | listed h | azardo | us waste | s your | installation | | handles. (See 40 CF
code A, B, or C. | H Parts | 261.21 | - 261,2 | 4) Belov | w each | box tha | at you o | check, (| enter th | ie m | onthly ger | neration | amoun | expre: | ssed in | pounds | s and ge | neration | frequency | | AMOUNT AND | | 1. 1 | GNITA
(D001 | | | | | | | 1 | CORR | | | 8 | | | 3. | REAC | }] | | FREQUENCY | | | II. | os. | | | | 725 | | | | bs. | | | | | 1 | | es. | | | | | | . 1 | | | | | | | | | | | | L
 - 3 | 10 | /5. | | | | | | ter the | | | | | | ies e | ach chai | racterist | ic toxi | wasti | e. Belo | w eacl | h numbe | er, ente | er | | | D | 0 | 0 | 2 8 | | D | 0 | 0 | 2 | | D | 0 | 000 | 2 | | LB | 0 | 0 | 2 6 | | FREQUENCY | D | 0 | Ū | 8 | | D
D | 0_ | 0 | 7 | | L | <u> </u> | ŏ | 8 | 7 1 | ــقــا | Lō_ | Ŏ | 8 | | | 3 | 3000 | lbs. | А | | | 2000 | lbs. | Α | | 10, | ,000 | ibs. | | | | 250 | lbs. | Α | | | | | | | MIS | sou | RIR | EQUI | RED | IN | ORMA | ATION | 1 | | | ··· | : | | | | MISSOURI GENE | RATO | RIDN | NUMB | ER (IF | PRE | VIOU | SLY A | SSIG | NED) | _ | 01001 | | | | | | | | | | PRINCIPAL BUSI | NESS | ACTI | VITY : | | | | | | | | | | | | | | 111 | | | | S.I.C. CODE (LEA | VE BL | ANK | IF UN | CERT | AIN) | | | | - | | |]-" | | | | | | | | | CHECK THIS BOX | X IF Y | OU G | ENER | ATE/A | CCU | MULA | TE L | ESS T | HAN | A F | EPORT | ABLE | QUAI | YTITY | 4 | | | | | | XI. CERTIFICAT | - | | | ië fit | | 100 | _ | | | | | | | | | | | | ati w | | I certify under per
documents, and the
information is true
the possibility of fir | at base
, accu | ed on n
rate, a | ny inqi
ind co | uiry of
implet | those | indivi | duals | immed | diately | res | ponsible | e for ob | tainin | g the i | nform | ation. | I believ | e the s | submitted | | SIGNATURE | ie anu | mpns | | | | | 1 | NAME A | ND OF | ICIA | L TITLE (| TYPE OR | PRINT) | | | DATE | | | | | Robert | 1 | // | an | tu | 5 | | | Robe | ert l | 1. | Kaatma | an, M | gr. | | | 2 | 6 5 | p | 90 | | MO 780-1164 (8-88) | ii i | - | | | | | | | | | - | | | | | | | | | # MISSOURI DEPARTMENT OF NATURAL RESOURCES WASTE MANAGEMENT PROGRAM | SE | NE | I |) | MISS
P.O. | BO | RI D
(176 | EPA
5, JE | FFE. | RSO | N CI | NAT
TY, I | URA
MO 6 | AL R | ESO
2 | URC | ES, W | ASTE | MA | NAC | SEME | NT P | ROG | RAN | 1 | | | | | | |----------------|--|--------|--------------------|-------------------|--------------|---------------|-----------------|-------|--------------|---------|--------------|-------------|---------|----------|---------|------------------|---------------|-----------|---------|---------------|-------------------|-------|-------|--------|---------|--------|-------|-------|------| | FOR | | محاد | THE REAL PROPERTY. | - | | | de la constante | 1000 | 200 | | | | | | | .mosse | | (| СОМ | MEN | TS | Smelds box to | _ | | | | _ | | | 0.080-7 | | -0 | | | | CC | | | | | | | | , | 11 | NSTAL | LAT | ION: | S EP | A ID | NUM | BER | | | | | APP | ROVE | D . | D.
YR. | | RECE
MO. | | AY | | | | | | | | | C | | | | | | | | | | | | | T/A | C
1 | | | | | T | | T | 1. | | | | | * | | | | 1. NA | ME | OFIN | ISTA | ΙΙΔΤ | ION | | | | | | | | | | | | | | | | | | | - | - | - | - | - | - | | 11.116 | | | | | | | | | | | | | | | 35-4 | | | | | | | | | | | T | | | | | II. IN | CTA | LAT | ION | MAII | ING | ADE | DEC | 20 | 11. 114 | SIA | LLAI | ION | MAIL | ma | ADL | MES | ,,, | | | S | STRE | ET C | OR P. | О. ВО | JN XC | JMBEF | 1 | | | | | | | | | | _ | _ | | С | | | | | | | | | | | | | | | | | | T | T | 1 | T | | | | | | T | | | | 3 | | | | | | | | | L | CITY | OD. | TOVA | | Щ | | | | | \perp | | | | I OT | | | 715 | | | | | С | | | | | | | | | · ' | CITY | UH | IOW | I I | | | Т | | \top | | $\overline{}$ | T- | | 1817 | ATE | | ZIP | COL | DE T | | | 4 | III. L | II. LOCATION OF INSTALLATION STREET AND NUMBER | - | STREET AND NUMBER | 5 | L | 1 | L | 1 | 1 | | | | | CITY | OR | TOW | /N | 1 | | | | | | | | | STA | ATE | | ZIP | COL | DE L | | | C
6 | 1 | | | | | | | | | IV. IN | STA | LLA | TION | CON | ITAC | T | | | | - | | | | | | | | | | | | | _ | | | | | | | | | | | | N | AME | E AN | D TI | TLE | (LAS | T, FI | RST, | AND | JOE | в тіт | LE) | | | | | | | TI | ELEP | HCN | E NU | MBE | 3 | | | | C
2 | V. 01 | VNE | RSH | P | | | | | | | | | | | | | | | | | | Ė | | | | | | | | | | | | , | | | A | . NA | ME (| OF IN | STA | LLA | TION | 'S LE | EGAL | OW | NER | | | | | | В. | TYPE | OF (| OWN | ERSH | IIP (E | NTEF | R COI | DE) | | C
R | | 4 | | | | • | IV. T | YPE | OF R | EGU | LATE | D W | AST | EAC | TIV | TY (| MAR | K "X' | 'IN 1 | THE | APPF | ROPR | IATE | BOXE | S. RE | FEF | TO | NSTF | RUCT | IONS | S) | | delli | | | | | | | 72.1 | - | HAZ | ARD | OUS | S WA | STE | _ | - | | | | | | - | | | _ | - | OIL F | | _ | VITIE | S | | | | | | ☐ 1a | | | | | | | | | | 1b. L | ESS T | HAN | 1,000 | KG./M | 10. | | 6. OFF- | | | | | | | | | | | | | | | | NSPO | | ER/DIS | 2002 | ED | | | | | | | | | | | (enter 'X' | | | | e doxes
RKETIN | | - | IED | | | | | | | | | | - |) INJE | | | | | | | | | | | | | | | | RKETE | | •6 10 | DUNI | VEN. | | | | | | | □ 5. | MAR | KET C | R BU | RN HA | ZARD | ous | WAS | TE FU | EL (en | ter 'X' | & mari | appro | opriate | boxes | below | | □ c. 8 | | | | | | | | | | | | | | H | | | | TOR M | | ETING | тов | BURN | ER | | | _ | ٦ | | | | 7. SPEC | | | | | | | | | | | NER) | | | | U 1 | 3. OT | HERN | MARKE | TER | | | | | | | | J C. 1 | BURN | ER | | WHO | FIRS | T CL | AIMS 1 | HE O | L MEE | TS TH | IE SPE | CIFIC | ATION | | 11 | | | VII. V | | | | | = | | _ | _ | _ | _ | | | | (9) | | Territor. | | | | | | | | | | | | | | | 1 . | | | | pprop
See in | | | | | | | | | | | | | s) in v | vhici | h ha | zard | ous v | vaste | fuei | or o | off-sp | ecifi | catio | on us | sed | | 1 — | | | | DILEF | | ,0110 | . 13 10 | , 00 | | | | | | BOIL | | | | | | C. In | VDUS | TRIA | AL FL | JRNA | CE | | | | | | - Select | | | | | | ATIO | ON (| TRA | - | | | | | | _ | THE | APPRO | PRI | | | | | | | | | - | | | | | A. A | R | | | Эв | . RA | VIL. | | | | C. H | IIGH | IWAY | 1 | | | D. W | ATE | R | | |] E. | ОТН | HER | (SPE | CIFY |) | | | | IX. F | IRST | OR | SUB | SEQU | ENT | NO | TIFI | CATI | ON | | | - | | | | | | | | | | | | | | | | | - | | Mark
not ve | 'X' ir | the | appro | priate
ion, en | box
ter v | to in | dicat | e wh | ether
EPA | this i | is you | ur ins | tallat | ion's | first n | otifica
belov | tion of | haza | | | | | - | | | | | | s is | | | | | | CATIO | | 1 | | | | | | | | | | | ITEM C | , | | /. IN: | STAL | LAI | ION | S EP | A 1. | J. NL | MB | EH | • | | MO 780 | -1164 | (8-88) | | | | | | | | | | _ | EPA | 8700-1 | 2/MDN | IR HWO | i-1 | | | | | - | | | | ONTIN | UE ON | REVI | ERSE | | | | | | | | ID - | FOR OFF | ICIAL U | SE ONLY | | . | |--|--|---------------------------|------------------|-------------------|--------------|--------------------|---------------|------------|----------------|------------|---------------| | | | | | | _c_ | | | | | | T/A | | X. DESCRIPTION | OF HAZARDOUS | WASTE | | | W | | | | | | | | A. Wastes from Non | | | the four-dia | it number from | n 40 CER | Part 261 31 for | each liet | ad base | -1 | | | | sources your insta | Illation handles. Belo | w each num | ber, enter mo | nthly generation | on amount | in pounds and | requency | code A, | B, or C. | from n | onspecif | | WASTE I.D. NO. | | | | | | | | | | · | | | FREQUENCY | lbs. | | | ibs. | | lb | s. | | | ibs. | | | B. Wastes from Spec | cific Sources (K-List)
andles. Below each n | . Enter the | four-digit nu | mber from 40 | CFR Part | 261.32 for eac | h listed ha | zardous | waste from | specifi | c source | | WASTE I.D. NO. | | | | | | | 1 | Α, Ο, Ο | <u>.</u> | | | | AMOUNT AND | lbs. | | | lbs. | 1 | lb | | | | | | | | | | | 1-4-17 | | | | J <u>L</u> | | lbs. | | | C. Commercial Chemi | cal Product Wastes (W
dous waste. Below eac | and P Lists |). Enter the for | ur-digit number | from 40 CF | R Part 261.33 fo | each cher | nical sub | stance your i | nstallatio | on handle | | WASTE I.D. NO. | | | | lly generation at | nount in por | unos ano rreque | ncy code A | , B, or C. | | | | | AMOUNT AND | | | | | ┸┑┌┸ | | | , , , , , | _ | | | | FREQUENCY | lbs. | | | lbs. | | lbs | s | - | 14 4 41 | lbs. | | | D. (Reserved) | | | | | | | - | | | | | | E. Characteristics of h | Applieted Mazardone V | Inches Mach | on IVI in the | <u> </u> | | | | | | | | | handles. (See 40 CF code A, B, or C. | 1. IGNITA | ABLE | ch box that yo | u check, enter t | he monthly | generation amo | unt express | sed in po | unds and ger | REACT | frequenc | | FREQUENCY | (D001 |) | | | (0 | 0002) | | - | | (D003) | | | THE GOENO! | | s. | | | | lbs. | | | | lbs | | | | 4 TOXIC Fo | ter the four | r-digit gumbo | r which identi | lian anah a | hannatariation | | | | | | | | X the month | y generatio | n amount and | frequency. | ies each C | haracteristic to | ixic waste. | Below | each numbe | r, enter | | | AMOUNT AND | D 0 0 | 3 | 8 8 | 8 8 | | 8 8 8 | 2 | | D002 D0 | 06 | 10 1 | | FREQUENCY | | | 4 8 1 8 | 1 9 8 | ┸┑┌┸┸ | SOT | | | <u>D0φ7</u> Dφ | 80 | | | 02 | 3350 lbs. | Α | 90 | O Ibs. B | | 120 _{lbs} | В | | 130,000 | ibs. | Α | | | li in in in in | М | ISSOURII | REQUIRED | INFOR | MATION | | | | | | | MISSOURI GENE | RATOR ID NUMB | ER (IF PR | EVIOUSLY | ASSIGNED | - 1 | 01001 | | | | | | | PRINCIPAL BUSII | NESS ACTIVITY | | 14 | | | E | | | | | Ŧ | | S.I.C. CODE (LEA | VE BLANK IF UN | CERTAIN |) | | | | Į. | | 72.17 | | | | CHECK THIS BO) | (IF YOU GENER | ATE/ACC | UMULATE | LESS THAN | A REPOR | RTABLE QUA | ANTITY | [| | | | | XI.
CERTIFICAT | ION | | | | | | 100 | | · · | | | | I certify under pen
documents, and tha
information is true
the possibility of fir | it based on my inqu
, accurate, and co | riry of thos
mplete. 1 | se individual: | s immediately | responsi | ble for obtain | ing the in | formati | on I believe | the ev | honista - | | SIGNATURE | The Transfer | 12 m | | NAME AND OF | FICIAL TITLE | E (TYPE OR PRIN | T) | . D | ATE | | | | Part of | H. Kan | Z | | Robert | H. Kas | atman, Mg | | | 26 5 | 0 4 | 7 D | | 10 780-1164 [8-88] | , | 74 | | , Nobel C | II. Nac | ioman, my | • | | | 1 | <u> </u> | # MISSOURI DEPARTMENT OF NATURAL RESOURCES WASTE MANAGEMENT PROGRAM | SE | NE |) T(|) | MISS
P.O. | OU
BO | RI D
K 17(| EPA
6, JE | RTN | IEN' | r of
N CI | NAT
TY, N | URAL
10 651 | RESC
02 | URC | ES, V | VAST | E MA | NA | GEME | NT P | ROG | RAN | 1 | | | | | | |--------|---|--------|----------|--------------|----------|---------------|--------------|---------|--------|--------------|--------------|----------------|------------|---------|----------|-----------|--------------|------------|---------|---------|---------|------|-------|--------|---------|----------|---------------|----------| | FOR | OFF | ICIA | LUS | E ON | LY | 1.000.0 | \neg | | | | | | | | | | | | | | | COM | MEN | NTS | | | | | | | | | | | | | | | CC | | | | | | | | | | | | | | | | | Ι. | | | | | | | | | | | | | | | 11 | | | | | l | | | | | | | | <u> </u> | | Щ | ATE | DECI | IVED | | | | | | | | \dashv | | | | | 11 | NSTAL | LAT | ION' | S EP | A ID | NUM | BER | | | | API | PROV | ED | YR. | MIE | MO. | | AY | | | | | | | | | С | | 7 | | | | | | | | | | T// | A C | | | | | T | | T | T | | | | | | | | | F | | | | | | | | | | | | | 1 | | | | | | | | | | | | | _ | | _ | | 1. 'NA | ME | OF IN | ISTA | LLAT | ION | 7 | | | | | | - | 1 | | | 1 | | | - | | 1 | | | | | | | _ | | | | | | | | | | | | | | | | | | | - | | | | | | | | | | | | | II. IN | STA | LLAT | ION | MAIL | NG | ADE | RES | S | \dashv | | | | | | | | | | | | | S | TREET | OR P | .O. B | OX N | UMBE | R | | | | | | | | | | | | | C
3 | | | | | | | | | | | | | 1 | | | | | | | | | | | | | | | | | 3 | | | | | | | | | | CITY | OR T | OWN | | | | | | | | | | STA | TC. | \Box | 710 | COL | \ <u></u> | - | | С | | | | | | | T | | | | | | T | | Π | | | Т | | | T | 317 | 1 | | 2.15 | | | \dashv | | -4 | III. L | I. LOCATION OF INSTALLATION STREET AND NUMBER | 5 | | | | | İ | _ | | | | | | - | | | | CITY | OR T | OWN | | | L | | | | | | | STA | ATE | | ZIP | COL |)E | \dashv | | С | | | | | | | | | | | | | T | | | | T | T | 1. | \top | T | | | | | | | \dashv | | 6 | | | | | | | | | | | | | | | | | \perp | | | Ц_ | | _ | | | | | | | | IV. IN | ISTA | LLAT | TION | | | | D TIS | TI E | I AC | T EI | DOT | AND JO | OR TIT | EL EV | - | | | | _ | | | 1.50 | | | 4.5 | | | _ | | С | | | | N | AMI | E AN | 1 | ILE | LAS | 1, 51 | H51, / | AND JO | וו פכ | LE) | | | - | | + | Т | 11 | LEP | HONI | E NU | MBE | 7 | | \dashv | | 2 | | | | | | | | | esere | | | | | | | | | | | | | | | | | | - | | | V. 01 | NNE | RSHI | Ρ | A | . NA | ME C | OF IN | ISTA | LLA | LION, | S LEG | AL OW | NER | 1 | | | | | В. | TYPE | OF (| DWN | RSH | IP (E | NTER | COL |)E) | | C
R | YPE | OF R | EGU | LATE | D W | AST | E AC | TIVI | TY (| MAR | K "X" | IN THE | APP | ROPE | RIATE | BOXE | S. RI | EFE | R TO | NSTE | RUCT | IONS | 3) | | - | | | | | | | | | HAZ | | | | | | | | | | | | | | | | OIL F | | | | S | | | | | | □ 1a | GEN | IERAT | OR | | | | | | | | ESS TH | IAN 1,00 | 0 KG./N | 10. | | 6. OFF | -SPEC | CIFIC | ATION | USED | OIL FL | JEL | • | | | | | | | □ 2. | TRAN | NSPOF | RTER | | | | | | | | | | | | | (enter ') | (° & ma | rk ap | propria | e boxes | below |) | | | | | | - | | | | | | ER/DIS | | | | | | | | | | 311 | | | | | | RKETI | NG TO | BURN | IER | | | | | | | | | | | INJEC | | | WAST | re el 1 | El /o= | (V' | 2 mack | appropria | sta hova | e halau | | | OTHE
BURN | | RKET | ER | | | | | | | | | | J. | | | | TOR MA | | | | | | IEI A | o mark | approprie | ne boxe | o Delow | · 1 — | 7. SPE | | - | N USE | D OIL I | FUEL N | ARKE | TER (| OR OI | J-SITE | - RI IRI | NFR) | | | | □ e | 3. OTF | HER M | IARKET | TER | | | | | | | С | . BURN | ER | | | | | | THE OI | | | | | | | V _11, | | | VII | VASI | re ei | IFI = | HIPM | NG | · TV | DE O | F CO | MRI | IST | ית אם | EVICE | | - | 1 | | | | | | | | | | | | | _ | | | | | | | | | | | | - | | of com | bustic | on de | evice | s) in | whic | h h | azard | ous 1 | vaste | fuel | or c | off-sr | ecifi | catio | ח נופ | ed | | | | | | | | | | | finiti | ons | of cor | nbusti | on de | vices | | | | - <u>1</u> | | | | | ٠. ١ | Up | | | 23 | | | | | | | ILER | | | | | _ | | | STRIA | | | | | | | | NDUS | TRIA | L FL | JRNA | CE | | | | | | VIII. | MOD | DE OF | TR | NSP | ORT | ATIO | ר) אכ | TRAI | ISP(| ORTE | RS O | NLY-E | NTER | 'X' IN | THE | APPR | OPR | IATE | ВОХ | (ES) | | | | | | | _ | | | | . Al | R | | | Јв | . RA | JL | | | | C. HI | GHWA | Y | | | D. W | VATE | ER | | , [| _ E. | OTH | HER (| SPE | CIFY |) | | | | IX. F | RST | OR : | SUBS | SEQU | ENT | NO | TIFIC | ATI | ON | | | | | 11. | Neuro | | | | | 110 | | | | | | | | \neg | | Mark | 'X' in | the a | appro | priate | box | to in | dicate | e whe | ther | | | install | | | | | haza | rdou | s was | e acti | vity or | a su | bsequ | ent n | otifica | tion. | If this | is | | not yo | ot your first notification, enter your installation's EPA ID Number in the space provided below. C. INSTALLATION'S EPA I.D. NUMBER | □ A | . FIR | ST NO | OTIF | CATIO | N | | | B. S | UBS | OUE | NT NC | TIFICA | TION | СОМ | PLETE | ITEM (| 2) | | | | | | | | | | | | | MO 780 | 1164 (| (8-88) | | | | | | | | | | ΕP | A 8700- | 2/MDI | NR HW | 3-1 | | | | | | | | C | ONTIN | UE ON | BEVE | | | | | | / | | | | | | | | | | | |--|-------------------------------------|--------------------------------|----------------------------|-------------------------------------|------------------------------|------------------------------|---------------------------|-----------|--|-----------------------|--------------|---------------------------|--------| | | | | | | | | ID - F | OR OFF | CIAL | USE ON | LY | | | | | | | | | S. C. | | - | 10 10 | 1.0 | Ti N | 47 27 | I/A | _C_ | | X. DESCRIPTION | OF HAZARD | OUS WAST | F | | | | | | | | | | 1 | | A. Wastes from Nons
sources your insta | pecific Source | s (F-List). Er | iter the fou | ur-digit numbe
er monthly ger | r from 40 C
eration amo | FR Part 26
ount in poun | 1.31 for e | ach liste | ed haz
code A | ardous v
, B, or C | vaste fro | m nonspi | ecific | | WASTE I.D. NO. | | | | | | | | | | | | | | | FREQUENCY | | lbs. | | ibs. | | | lbs. | | | II | IŁ | os. | | | B. Wastes from Spec
your installation ha | ific Sources (K
andles Below ea | -List). Enter
ach number, | the four-di
enter the m | git number fro
onthly generati | m 40 CFR
on amount i | Part 261.32
n pounds ar | for each | listed ha | azardoi
A, B, c | us waste
or C. | from sp | ecific so | ırces | | WASTE I.D. NO. | | | | | | | _ | | • | | | | | | FREQUENCY | . = | ibs. | | lbs. | | | lbs. | | | | It | os. | | | C. Commercial Chemic which may be hazar | al Product Wast | es (W and P L | ists). Enter the | the four-digit nu
monthly genera | mber from 4 | 0 CFR Part 2
in pounds an | 61.33 for e | each cher | mical su | ibstance
C. | your insta | llation ha | ndles | | WASTE I.D. NO. | | - | | | | | | | | | | | | | AMOUNT AND FREQUENCY | | lbs. | | lbs. | | | lbs. | - | | | Ib | S. | | | D. (Reserved) | | | | | | | | | | | | | | | E. Characteristics of Mandles. (See 40 CF code A, B, or C. | onlisted Hazard
R Parts 261.21 - | ous Wastes, 1
261.24) Belov | Mark an 'X' v each box t | in the boxes co | orresponding
enter the mo | to the char
nthly genera | racteristics
tion amou | of nonli | sted ha | zardous
oounds a | wastes you | our install
tion frequ | ation | | AMOUNT AND FREQUENCY | | (D001) | | | 2. | CORROS
(D002) | IVE | | | | | ACTIVE
003)
lbs. | | | | χ 4. TOXI | C Enter the | four-digit r
ation amou | number which
nt and frequen | identifies ea | ach characte | eristic tox | ic waste | . Belov | w each r | iumber, e | enter | | | AMOUNT AND | D002 D00 | 03 D004 | DO
DO | 02 D004 E | 006
010 | D002
D008 | D007
D010 | | , , | D002 | D004
D008 | | | | | 264,000 | lbs. A | | 290 lbs. | В | 10,70 | 0 ibs. | A | | 48 | 300 lbs | s. A | | | | | | MISSO | URI REQUI | RED INF | ORMATI | ON | | | | | | | | MISSOURI GENE | RATOR ID N | UMBER (IF | PREVIO | JSLY ASSIG | NED) | 01001 | | | 1 (F) (1 (F) | | | i | | | PRINCIPAL BUSII | NESS ACTIV | ITY | | | | | | | | | | | - | | S.I.C. CODE (LEA | VE BLANK IF | UNCERT | AIN) | | | | |) 4 | | | | | - 44 | | CHECK THIS BOX | | NERATE/A | CCUMUL | ATE LESS T | HAN A RE | PORTAB | LE QUA | NTITY | | | | 3 | | | XI. CERTIFICAT | | | | 92 - 11.01 | 0 = 1 . | 1 | 10 | | | Π_ Π | multi | | | | I certify under pen
documents, and the
information is true
the possibility of fir | it based on
my
, accurate, ar | y inquiry of
nd complete | those indiv | viduals immed
are that ther | diately resp
e are sign | onsible fo
ificant per | r obtaini
nalties fo | ng the in | nforma | ition. I t | elieve th | e submi | tted | | SIGNATURE | f2 / | farts | | | nd official | | M. 34 | | | DATE
Q | , Sep | 90 | | MO 780-1164 (8-88) # MISSOURI DEPARTMENT OF NATURAL RESOURCES WASTE MANAGEMENT PROGRAM | SE | NC |)-T(|)
) | P.O. | BO | X 17 | 6, JE | FFE | RSO | N CI | TY, I | WO 651 | 1230 | URC | E3, WA | SIEI | MAN | AGE | MEI | al Pi | HOG | IHAN | | | | | | | |--|------------------|--|-------------------|----------------------|--------------|-----------------|------------------|-----------------|----------------|-----------------|---------------|------------------|------------------|--------------------|-----------------------|---------------------|-----------|-----------------|-------|---------|------|-------|-------|----------|--------|---------|-------|----------| | FOR | DFF | ICIA | LUS | E ON | LY | | | | | | | - | | | | | | escentia (di se | | | | | | | | | | | | | | | - | | | | | | | | | - | CON | MEN | TS | - | | | | | | | | | | | | | | CC | | | | | | | | | | | | | | | | | | | • | | | | | | | | | | | | | | 11 | NSTAL | LAT | ION. | 'S EP | A ID | NUM | BER | | | • | APP | ROVED | Y | DA'
R. | TE RE | | | AY | | | | · | | L | | | C
F | | | | | - | | | | | | | . T/A | C 1 | | | T | | | • | | | Г | | | | | | コ | | 1. NA | ME | OF IN | ISTA | LLAT | ION | | | | | | | | 1 | | | | | | | | ! | | | | | | | | | | | | | | | | , | \neg | | II. IN | STAI | LLAT | ION | MAIL | ING | ADI | DRES | SS | | | | | | | | | | | | | 3, | | | | | | | _ | | | | | | | | | | | - | | 5 | TREET | OR P | .O. BO | NUN XC | BER | _ | | | | | | | | | | | \neg | | С | \neg | | 3 | | | | | | | | | | CITY | OP. | TOWN | | | | | | | | | | 07 | | Ш | | | | _ | | ·C | | | | | | | | | | 3,11 | On | TOWN | T | | | | | | · · · | | | 517 | ATE | | ZIP | COI | DE | | | •4 | 264 | TION | O.F. | INICT | | TIO | N. | | | | | | | | | | | | | | | i | | | | | | | | III. LO | JCA | HON | OF | INSTA | ILL/ | TIO | N | | - 07
- | | | STRI | FFT A | NDN | UMBER | | ~ | | - | ulle de | | - | | - | - | | - | _ | | С | | | | | . | | | | | | | | | | TOWN BE | | | | | | | | | | | Т | | \neg | | 5 | | | | | | | | | | CITY | | TOWN | | | | | | | | | L., | I CT | | | | | | | | С | | | | | | | | | | | | TOWN | Τ | | | T | | | | Γ | I | 1517 | ATE | \vdash | ZIP | COI | DE | \dashv | | 6 | IV. IN | ISTA | LLAT | TION | | | | D 71 | TLE | /L A C | T [1 | OCT | AND IO | O T. | E1 E1 | | | | - | | | | | | | | | | \Box | | С | · · · · | | | IN. | AME | E AN | ווט | ILE | (LAS | 1, FI | HS1, | AND JC | 1 | LE) | | | | | _ | Γ- | TE | LEP | HON | E NU | MBE | R | | \dashv | | 2 | . | | V. OV | VNE | RSHI | Р | | _ | | 115.6 | 25.14 | 107.4 | | | 0.1.50.4 | | | 1456 | | | | | (1000) | | | 500 | | | | 2- Y | | | С | | | | | A. | NA. | ME |)

 | ISTA | LLA | NOI | 'S LEGA | T | NER | · - | Т | | | | В. Т | YPE | OF (| INWC | ERSH | IIP (E | NTE | R CO | DE) | | R | : | | | | | | | | IV. T | YPE | OF R | | | | | | | | | | IN THE | APPI | ROPR | IATE BO | XES. | | | | 100 | 100 | | | | | | | | | | | | | HAZ | ARD | OUS | S WA | STE | | | - | | | | - | | | UŞE | | | | | VITIE | S | | | | | | 1a. | | ERAT(| | | | | | | Ш | 1b. Ll | ESS TI | HAN 1,000 | KG./N | 10. | 6. | OFF-SF
ter 'X' & | | | | | | | | | | | | | | | | | | ER/DIS | POS | ER | | | | | | | | | | a. GE | | | | | | | IFR | | | | | | | 4. | UNDE | ERGRO | DUND | INJEC | TIO | V | | | | | | | | | | b. OT | | MARKI | | | | | | | | | | | | LJ 5. | | | | | | | | | | ter 'X' i | & mark | appropriat | e boxe | s below) | OR MA | | TING | TOE | BURNI | ER | | | П с. | DUDA | ED | 7. | SPECIF
WHO F | | | | | | | | | | | NER) | | | | | | | | | | | | | | = | | 50111 | | | WHO F | insi | CLAIM | 15 In | E OIL | MEE | 15 17 | E SPE | CIFIC | ATION | · | | | | RESEARCH TO THE TH | | | _ | | | | - | | | _ | | EVICE
of comb | otic | n do | vice (a) | ini | | h | | | 4- | 6 | | | | | | | | oil fu | el is | burn | ed. S | See in | stru | ctio | ns fo | or de | finitio | ons (| of co | mbustio | n de | vices) | VICE(3) | III WI | licii | IIdza | raoi | IS W | asie | tuei | or c | ıπ-sp | peciți | catic | on us | sed | | □ A. | | No. of Concession, Name of Street, or other Designation, Name of Street, Original Property O | WHITE SHAPE | THE OWNER WHEN | | - | | | THE RESERVE OF | | 200 | STRIAL | - | | September 1 | | | | | | TRIA | LFL | IRNA | CE | | | | | | | | | TRA | NSP | ORT | ATIO |) ИС | TRAN | YSPC | RTE | RS C | NLY-EN | ITER | 'X' IN | THE AF | PROF | PRIA | TE BO | OX(E | S) | _ | | | | | | | | | | . All | R | | |] B | . RA | JL | | | | С. Н | IGHWA | Υ | | | . WA | TER | | | | E. | OTH | IER (| SPE | CIFY |) | | | | IX. FI | 500 | | | THE RESERVE TO SHARE | Mark 'not yo | X' in
ur firs | the a
st noti | ippro
fication | priate
on, ent | box
er yo | to in
our in | dicati
stalla | e whe
tion's | EPA | this i
ID Nu | s you
mber | r installa | tion's
ace pr | tirst no
ovided | otification
below: | of ha | zarde | | | | | | | A I.E | | | | s is | | □ A | FIR | ST NO | TIFI | CATIO | N | | | B. S | UBSE | QUE | NT NO | DTIFICAT | ION (| СОМР | LETE IT | M C) | | | | | - | | | | J. 141 |) INI D | EN | 7 | # TABLE C-1 PARAMETERS AND TEST METHODS | PAR | AMETER | TEST METHOD | REFERENCE | |-----|-------------------------|-------------------------------------
--| | 1. | рН | Electrometric | Test Methods for Evaluating Solid Waste - Physical/Chemical Methods (SW-846), U.S. EPA, 1986 (9040) | | 2. | Flash Point | Pensky-Martens
closed-cap tester | Test Methods for Evaluating Solid Waste - Physical/Chemical Methods (SW-846), U.S. EPA, 1986 (1010) | | 3. | TCLP | TCLP | 40 CFR 261 Appendix II | | 4. | EP Toxicity | EP Toxicity | 40 CFR 261 Appendix II | | 5. | Reactivity
(cyanide) | Titration/
colorimetric | Test Methods for Evaluating Solid Waste - Physical/Chemical Methods (SW-846), U.S. EPA, 1986 (7.3.3) | | 6. | Reactivity
(sulfide) | Distillation | Test Methods for Evaluating Solid Waste - Physical/Chemical Methods (SW-846), U.S. EPA, 1986 (7.3.4) | | 7. | Arsenic | Atomic
absorption | Test Methods for Evaluating Solid Waste - Physical/Chemical Methods (SW-846), U.S. EPA, 1986 (6010) | | 8. | Barium | Atomic
absorption | Test Methods for Evaluating Solid Waste - Physical/Chemical Methods (SW-846), U.S. EPA, 1986 (6010) | | 9. | Cadmium | Atomic
absorption | Test Methods for Evaluating Solid Waste - Physical/Chemical Methods (SW-846), U.S. EPA, 1986 (6010) | | 10. | Chromium (VI) | Atomic absorption | Test Methods for Evaluating Solid Waste - Physical/Chemical Methods (SW-846), U.S. EPA, 1986 (6010) | | 11. | Lead | Atomic
abosrption | Test Methods for Evaluating Solid Waste - Physical/Chemical Methods (SW-846), U.S. EPA, 1986 (6010) | | 12. | Mercury | Atomic
absorption | Test Methods for Evaluating Solid Waste - Physical/Chemical Methods (SW-846), U.S. EPA, 1986 (6010) | | 13. | Selenium | Atomic absorption | Test Methods for Evaluating Solid Waste - Physical/Chemical Methods (SW-846), U.S. EPA, 1986 (6010) | TABLE C-1 PARAMETERS AND TEST METHODS | | PARAMETER | TEST METHOD | REFERENCE | |-----|----------------------|------------------------------------|---| | 14. | Silver | Atomic
absorption | Test Methods for Evaluating Solid Waste - Physical/Chemical Methods (SW-846), U.S. EPA, 1986 (6010) | | 15. | Specific gravity | Hydrometer/
pycnometer | ASTM-D 891-86 | | 16. | Volatiles | Ignition | Standard Methods 254 OE | | 17. | Total halogen | Titration | Test Methods for Evaluating Solid Waste - Physical/Chemical Methods (SW-846), U.S. EPA, 1986 (9020) | | 18. | Sulfuric acid | Ion
chromatography | Standard Methods 4110 B | | 19. | Hydrofluoric
acid | Ion
chromatography | Standard Methods 4110 B | | 20. | Nitric acid | Ion
chromatography | Standard Methods 4110 B | | 21. | Hydrochloric
acid | Ion
chromatography | Standard Methods 4110 B | | 22. | Phosphoric acid | Ion
chromatography | Standard Methods 4110 B | | 23. | Ferric chloride | Atomic absorption | Test Methods for Evaluating Solid Waste - Physical/Chemical Methods (SW-846), U.S. EPA, 1986 (6010) | | 24. | Nitrite/nitrate | Colorimetric/
spectrophotometer | Standard Methods 4110 B/4500 | | 25. | Residue at 105°C | Evaporation/ ignition | Standard Methods 254 OB | * TABLE C-2 # METHODS USED TO SAMPLE HAZARDOUS WASTES #### AND # PARAMETERS FOR FINGERPRINT ANALYSIS | STE
STREAM
NUMBER
001 | HAZARDOUS WASTE Waste acid solution from titanium metal surface cleaning (nitric and chromic acid) | EPA WASTE IDENTIFICATION NUMBER DO02, D007, D010 | FINGERPRINT ANALYSIS pH; specific gravity; inorganic nitrates; *hexavalent chrome | SAMPLING METHOD Samplers and Sampling Procedures for Hazardous Waste Streams, EPA-600/ 2-80-018, Pages 36 and 38 | DESCRIPTION OF SAMPLING A representative sample from a drum or a tank less than four feet deep using a coliwasa, or a composite sample from a tank deeper than four feet using a weighted bottle to grab samples at the top, middle, and bottom of the tank | Solid Waste, Physical/Chemical Methods, EPA-SW-846 | |--------------------------------|--|---|---|---|--|--| | 003 | Waste acid sol- ution from oxide removal on aluminum and titanium sur- faces (nitric acid, potas- sium dichromate, potassium nitrate, sodium bifluoride) | D002, D007, D008 | pH; specific
gravity; inorganic
nitrates; inor-
ganic fluorides;
*hexavalent chrome | Hazardous Waste | A representative sample from a drum or a tank less than four feet deep using a coliwasa, or a composite sample from a tank deeper than four feet using a weighted bottle to grab samples at the top, middle, and bottom of the tank | Physical/Chemical Methods, EPA-SW-846 | | WASTE
STREAM
NUMBER
005 | HAZARDOUS WASTE Waste acid solution from removal of excess paint from part racks (chromic acid and phos- phoric acid) | EPA WASTE IDENTIFICATION NUMBER DO02, D007, D008 | FINGERPRINT ANALYSIS pH; specific gravity; % chromic acid; inorganic phosphates | SAMPLING METHOD Samplers and Sampling Procedures for Hazardous Waste Streams, EPA-600/ 2-80-018, Pages 36 and 38 | sample from a drum or a tank less Solid Wathan four feet Physical | chods for
luation of | |----------------------------------|--|---|--|---|---|-------------------------| | 008 | Waste acid sol-
ution from a
chemical conver-
sion coating
process of alum-
inum and titanium
surfaces (chromic
acid, fluorides,
ferricyanide) | D002, D007 | pH; specific
gravity;
% chromic acid;
inorganic
fluorides;
reactivity
(ferricyanide) | Samplers and Sampling Pro- cedures for Hazardous Waste Streams, EPA-600/ 2-80-018, Pages 36 and 38 | sample from a drum the Eval
or a tank less Solid Wa | iste,
I/Chemical | | WASTE
STREAM
NUMBER | HAZARDOUS
WASTE | EPA WASTE
IDENTIFICATION
NUMBER | FINGERPRINT
ANALYSIS | SAMPLING
METHOD | DESCRIPTION
OF SAMPLING | REFERENCE
FOR SAMPLER | |---------------------------|--|---------------------------------------|---|--|---|--------------------------| | JU9 | Waste acid and chlorinated sol- vent solution from a coating removal opera- tion (methylene chloride, formic acid, phenol) | D002, F002 | pH; specific
gravity;
phenol; organic
chlorides | Samplers and Sampling Pro- cedures for Hazardous Waste Streams, EPA-600/ 2-80-018, Pages 36 and 38 | A representative sample from a drum or a tank less than four feet deep using a coliwasa, or a composite sample from a tank deeper than four feet using a weighted bottle to grab samples at the top, middle, and bottom of the tank | n e | | 010 | Waste acid solution from aluminum metal surface cleaning (sulfuric acid, sodium dichromate) | D002, D008 | pH; specific
gravity; inorganic
sulfates;
% chromic acid | Samplers and Sampling Pro- cedures for Hazardous Waste Streams, EPA-600/ 2-80-018, Pages 36 and 38 | or a tank less
than four feet | n
o
he | | WASTE
STREAM
NUMBER
012 | HAZARDOUS WASTE Waste acid solution from cleaning and pickling aluminum and titanium (nitric and hydrofluoric acid) | EPA WASTE IDENTIFICATION NUMBER D002, D006, D007, D008 | FINGERPRINT ANALYSIS pH; specific gravity; inorganic nitrates; inorganic fluorides; *hexavalent chrome | Samplers and Sampling Pro- cedures for Hazardous Waste Streams, EPA-600/ 2-80-018, Pages 36 and 38 | DESCRIPTION OF SAMPLING A representative sample from a drum or a tank less than four feet deep using a coliwasa, or a composite sample from a tank deeper than four feet using a weighted bottle to grab samples at the top, middle, and bottom of the tank of the tank deeper than t | Solid Waste, Physical/Chemical Methods, EPA-SW-846 | |----------------------------------|---|---|---|--
--|--| | U13 | Waste acid sol-
ution from
chromic acid
anodizing of
aluminum and
titanium (chromic
acid, ferric
nitrate, potas-
sium fluoride) | D002, D007 | pH; specific
gravity; inor-
ganic fluorides;
% chromic acid;
ferric nitrate | Samplers and Sampling Pro- cedures for Hazardous Waste Streams, EPA-600/ 2-80-018, Pages 36 and 38 | A representative sample from a drum or a tank less than four feet deep using a colinasa, or a composite sample from a tank deeper than four feet using a weighted bottle tograb samples at top, middle, and bottom of the tan | Solid Waste, Physical/Chemical Methods, EPA-SW-846 | | WASTE
STREAM
NUMBER
014 | HAZARDOUS WASTE Waste acid solution from an aluminum hard coating operation (sulfuric and oxalic acid) | EPA WASTE IDENTIFICATION NUMBER D002, D007, D008 | FINGERPRINT ANALYSIS pH; specific gravity; inor-ganic sulfates; *hexavalent chrome | SAMPLING METHOD Samplers and Sampling Pro- cedures for Hazardous Waste Streams, EPA-600/ 2-80-018, Pages 36 and 38 | DESCRIPTION OF SAMPLING A representative sample from a drum or a tank less than four feet deep using a coliwasa, or a composite sample from a tank deeper than four feet using a weighted bottle to grab samples at the top, middle, and bottom of the tank | ne
e | |----------------------------------|---|---|---|---|--|---------------------------------------| | 016 | Waste acid from stainless steel pickle or pretreatment (hydrochloric acid) | D002, D006 | pH; specific
gravity; inor-
ganic chlorides;
*hexavalent chrome | Samplers and Sampling Pro- cedures for Hazardous Waste Streams, EPA-600/ 2-80-018, Pages 36 and 38 | A representative sample from a drum or a tank less than four feet deep using a coliwasa, or a composite sample from a tank deeper that four feet using a weighted bottle t grab samples at top, middle, and bottom of the tank | Physical/Chemical Methods, EPA-SW-846 | | WASTE
STREAM
NUMBER
021 | HAZARDOUS WASTE Waste acid from a stainless steel cleaning process (hydrofluoric and sulfuric acid) | EPA WASTE IDENTIFICATION NUMBER DOU2 | FINGERPRINT ANALYSIS pH; specific gravity; inor- ganic sulfates; inorganic chlor- ides; *hexavalent chrome | Samplers and Sampling Procedures for Hazardous Waste Streams, EPA-600/ 2-80-018, Pages 36 and 38 | DESCRIPTION OF SAMPLING A representative sample from a drum or a tank less than four feet deep using a coliwasa, or a composite sample from a tank deeper than four feet using a weighted bottle to grab samples at the top, middle, and bottom of the tank REFERENCE FOR SAMPLER Test Methods for the Evaluation of Solid Waste, Physical/Chemical Methods, EPA-SW-846 | |----------------------------------|---|--------------------------------------|---|--|--| | 022 | Waste acid solution and sludge from various metal etching and cleaning (nitric, chromic, and hydrofluoric acid) | • | pH; specific
gravity; inor-
ganic nitrates;
inorganic
fluorides;
% chromic acid | Samplers and Sampling Pro- cedures for Hazardous Waste Streams, EPA-600/ 2-80-018, Pages 36 and 38 | A representative sample from a drum or a tank less than four feet deep using a coliwasa, or a composite sample from a tank deeper than four feet using a weighted bottle to grab samples at the top, middle, and bottom of the tank | ^{*}Unily if solution is yellow in appearance | WASTE
STREAM
NUMBER
U23 | HAZARDOUS WASTE Waste acid solution from metal surface passivation (nitric acid) | EPA WASTE IDENTIFICATION NUMBER D002, D007 | FINGERPRINT ANALYSIS pH; specific gravity; inor- ganic nitrates; *hexavalent chrome | SAMPLING METHOD Samplers and Sampling Procedures for Hazardous Waste Streams, EPA-600/ 2-80-018, Pages 36 and 38 | OF SAMPLING A representative sample from a drum | | |----------------------------------|---|---|--|---|---|-----| | 024 | Waste alkaline solution from stripping of chromium plating (sodium hydroxide, sodium carbonate, sodium phosphate, chromium) | D002, D006, D007, D008 | pH; specific
gravity; % sodium;
*hexavalent chrome | Samplers and Sampling Pro- cedures for Hazardous Waste Streams, EPA-600/ 2-80-018, Pages 36 and 38 | A representative sample from a drum or a tank less than four feet deep using a coliwasa, or a composite sample from a tank deeper than four feet using a weighted bottle to grab samples at the top, middle, and bottom of the tank | nee | | WASTE
STREAM
NUMBER | HAZARDOUS
WASTE | EPA WASTE IDENTIFICATION NUMBER | FINGERPRINT
ANALYSIS | SAMPLING
METHOD | | FERENCE
DR SAMPLER | |---------------------------|--|---------------------------------|---|--|--|--| | 025 | Waste alkaline solution derust cleaning of metal parts (sodium hydroxide, triethanolamine, sodium gluconate, kerosene) | D002, D007 | pH; specific
gravity;
% sodium;
*hexavalent chrome | Samplers and Sampling Pro- cedures for Hazardous Waste Streams, EPA-600/ 2-80-018, Pages 36 and 38 | sample from a drum the or a tank less So | est Methods for
ne Evaluation of
olid Waste,
nysical/Chemical
ethods, EPA-SW-846 | | U26 | Waste alkaline solution from cadmium cyanide plating operation (sodium cyanide, sodium hydroxide, cadmium oxide, sodium carbonate) | DUU2, DUU3 | pH; specific
gravity;
% sodium;
cyanide | Samplers and Sampling Pro- cedures for Hazardous Waste Streams, EPA-600/ 2-80-018, Pages 36 and 38 | sample from a drum the or a tank less So | olid Waste,
hysical/Chemical | ^{*}Unly if solution is yellow in appearance | WASTE
STREAM
NUMBER
U28 | HAZARDOUS WASTE Waste potassium dichromate sol- ution from
anodize sealing | EPA WASTE IDENTIFICATION NUMBER D007 | FINGERPRINT ANALYSIS pH; specific gravity; % potassium dichromate | Samplers and Sampling Procedures for Hazardous Waste Streams, EPA-600/ 2-80-018, Pages 36 and 38 | DESCRIPTION OF SAMPLING A representative sample from a drum or a tank less than four feet deep using a coliwasa, or a composite sample from a tank deeper than four feet using a weighted bottle to grab samples at the top, middle, and bottom of the tank | Solid Waste, Physical/Chemical Methods, EPA-SW-846 | |----------------------------------|---|---------------------------------------|--|--|--|--| | 029 | Waste alkaline cleaning solution from cleaning aluminum (sodium tripolyphosphate, sodium borate, sodium nitrate, sodium chromate) | | pH; specific
gravity;
% alkalinity;
*hexavalent
chrome | Samplers and Sampling Pro- cedures for Hazardous Waste Streams, EPA-600/ 2-80-018, Pages 36 and 38 | or a tank less | o
he | | WASTE
STREAM
NUMBER
031 | HAZARDOUS MASTE Waste ferric chloride sol- ution from metal etching | EPA WASTE IDENTIFICATION NUMBER DO02 | pH; specific gravity; % ferric chloride; total chromium | SAMPLING METHOD Samplers and Sampling Procedures for Hazardous Waste Streams, EPA-600/ 2-80-018, Pages 36 and 38 | sample from a drum or a tank less than four feet deep using a coli-wasa, or a composite sample from a tank deeper than four feet using a weighted bottle to grab samples at the | Solid Waste, Physical/Chemical Methods, EPA-SW-846 | |----------------------------------|--|---------------------------------------|---|---|---|---| | U35 | Waste alkaline solution from aluminum chemical milling | D002, D003, D004
D010 | pH; specific
gravity;
% sodium;
sulfides | Samplers and Sampling Pro- cedures for Hazardous Waste Streams, EPA-600/ 2-80-018, Pages 36 and 38 | sample from a drum
or a tank less | Test Methods for the Evaluation of Solid Waste, Physical/Chemical Methods, EPA-SW-846 | weighted bottle to grab samples at the top, middle, and bottom of the tank #### TABLE C-2 | WASTE
STREAM
NUMBER | HAZARDOUS
WASTE | EPA WASTE IDENTIFICATION NUMBER | FINGERPRINT
ANALYSIS | SAMPLING
METHOD | DESCRIPTION OF SAMPLING | REFERENCE
FOR SAMPLER | |---------------------------|---|---------------------------------|--|--|---|---| | U36 | Sludge from industrial waste water pretreatment plant | F006, F019 | pH; specific
gravity;
residue at
105C | Samplers and Sampling Procedures for Hazardous Waste Streams, EPA-600/ 2-80-018, Page 11 | Composite sample using a Trier scoop from six points in a nine cubic yard container | Test Methods for
the Evaluation of
Solid Waste,
Physical/Chemical
Methods, EPA-SW-846 | Test Methods for A representative pH; specific Samplers and Waste oil sample from a drum the Evaluation of Water-emulsified **U37** Sampling Progravity; cutting oil from Solid Waste, or a tank less arsenic; lead; cedures for cutcing and Physical/Chemical than four feet cadmium; total Hazardous Waste deep using a coli-Methods, EPA-SW-846 machining alum-Streams, EPA-600/ chromium inum, titanium, wasa, or a com-2-80-018, Pages and ferrous-base posite sample from 36 and 38 metals and alloys a tank deeper than four feet using a | WASTE
STREAM
NUMBER
042 | HAZAROOUS WASTE Waste jet fuel contaminated with water | EPA WASTE IDENTIFICATION NUMBER DOO1 | FINGERPRINT ANALYSIS Flash point; specific gravity | Samplers and Sampling Pro- cedures for Hazardous Waste Streams, EPA-600/ 2-80-018, Pages 36 and 38 | DESCRIPTION OF SAMPLING A representative sample from a drum or a tank less than four feet deep using a coliwasa, or a composite sample from a tank deeper than four feet using a weighted bottle to grab samples at the top, middle, and bottom of the tank | e | |----------------------------------|---|---------------------------------------|---|--|--|--------| | 043 | Mixed flam-
mable solvents | F003, F005, D001, D007, D008, D035 | Flash point;
specific gravity | Samplers and Sampling Pro- cedures for Hazardous Waste Streams, EPA-600/ 2-80-018, Pages 36 and 38 | A representative sample from a drum or a tank less than four feet deep using a coliwasa, or a composite sample from a tank deeper than four feet using a weighted bottle to grab samples at the top, middle, and bottom of the tank | e
e | | WASTE
STREAM
NUMBER | HAZARDOUS ** | EPA WASTE IDENTIFICATION NUMBER | FINGERPRINT
ANALYSIS | SAMPLING
METHOD | | REFERENCE
FOR SAMPLER | |---------------------------|--|---------------------------------|------------------------------------|--|--|--| | 038 | Solid hazardous waste from aircraft painting and servicing | DU07 | TCLP
(chromium,
lead) | Samplers and Sampling Pro- cedures for Hazardous Waste Streams, EPA-600/ 2-80-018, Pages 12 and 13 | Composite sample using a scoop from containers of solid waste | 40 CFR 261
Appendix II | | U4 0 | Waste paint sludge from air-
craft and build-
ing maintenance | D001, D007 | TCLP
(chromium);
flash point | Samplers and Sampling Procedures for Hazardous Waste Streams, EPA-000/ 2-80-018, Pages 12 and 13 | Composite sample using a scoop from waterfalls in paint booths | 40 CFR 261 Appendix II and Test Methods for the Evaluation of Solid Waste, Physical/Chemical Methods, EPA-SW-846 | | 041 | Waste chlorinated solvents from metal cleaning and degreasing operations and paint stripping | F001, F002
D040 | Flash point; specific gravity | Samplers and Sampling Pro- cedures for Hazardous Waste Streams, EPA-600/ 2-80-018, Pages 36 and 38 | A representative sample from a drum or a tank less than four feet deep using a coliwasa, or a composite sample from a tank deeper than four feet using a weighted bottle to grab samples at t top, middle, and bottom of the tan | Solid Waste, Physical/Chemical Methods, EPA-SW-846 | | WASTE
STREAM
NUMBER | HAZARDOUS
WASTE | EPA WASTE IDENTIFICATION NUMBER | FINGERPRINT
ANALYSIS | SAMPLING
METHOD | DESCRIPTION OF SAMPLING | REFERENCE
FOR SAMPLER | |---------------------------|---|---------------------------------|----------------------------------|--|---|--| | 044 | Waste hydraulic
and motor oil | Waste oil | PCB; chlorine | Samplers and Sampling Pro- cedures for Hazardous Waste Streams, EPA-600/ 2-80-018, Pages 36 and 38 | A representative sample from a drum or a tank less than four feet deep using a coliwasa, or a composite sample from a tank deeper than four feet using a weighted bottle to grab samples at the top, middle, and bottom of the tank | Solid Waste, Physical/Chemical Methods, EPA-SW-846 | | 045 | Mixed flammable/
chlorinated
solvents | F002, D001, D007, D008 | Flash point;
specific gravity | Samplers and Sampling Procedures for Hazardous Waste Streams, EPA-600/ 2-80-018, Pages 36 and 38 | A representative sample from a drum or a tank less than four feet deep using a coliwasa, or a composite sample from a tank deeper than four feet using a weighted bottle to grab samples at the top, middle, and bottom of the tank | Solid Waste, Physical/Chemical Methods, EPA-SW-846 | |
WASTE
STREAM
NUMBER
U53 | HAZARDOUS WASTE Waste sodium bicarbonate used to neutral- ize an acid spill | EPA WASTE IDENTIFICATION NUMBER DOU2, DO06, D007 | FINGERPRINT
ANALYSIS
pH | SAMPLING METHOD Samplers and Sampling Pro- cedures for Hazardous Waste Streams, EPA-600/ 2-80-018, Pages 12 and 13 | DESCRIPTION OF SAMPLING Composite sample using a scoop | REFERENCE FOR SAMPLER Test Methods for the Evaluation of Solid Waste, Physical/Chemical Methods, EPA-SW-846 | |----------------------------------|--|--|-------------------------------|---|---|--| | 069 | Plating solution for ferrous and non-ferrous alloys (nickel sulfamate, boric acid) | DU02 | рН | Samplers and Sampling Pro- cedures for Hazardous Waste Streams, EPA-600/ 2-80-018, Pages 36 and 38 | wasa, or a
composite sample | Solid Waste, Physical/Chemical Methods, EPA-SW-846 | | | | | | | from a tank deeper than four feet using a weighted bottle to grab samples at the topoid of the tank |) , | | WASTE
STREAM
NUMBER | HAZARDOUS
WASTE | EPA WASTE IDENTIFICATION NUMBER | FINGERPRINT
ANALYSIS | SAMPLING
METHOD | DESCRIPTION OF SAMPLING | REFERENCE
FOR SAMPLER | |---------------------------|--|---------------------------------|--|--|---|--| | 070 | Phosphatizing of ferrous metal (phosphoric acid) | D002, D006, D008 | ph; specific
gravity; inor-
ganic phosphates | Samplers and Sampling Pro- cedures for Hazardous Waste Streams, EPA-600/ 2-80-018, Pages 36 and 38 | A representative sample from a drum or a tank less than four feet deep using a coliwasa, or a composite sample from a tank deeper than four feet using a weighted bottle to grab samples at the top, middle, and bottom of the tank | | | 075 | Mold material
for die-casting
metals (sodium
nitrate) | D002 | pH; specific
gravity;
nitrate/
nitrite | Samplers and Sampling Pro- cedures for Hazardous Waste Streams, EPA-600/ 2-80-018, Pages 36 and 38 | A representative sample from a drum or a tank less than four feet deep using a coliwasa, or a composite sample from a tank deeper than four feet using a weighted bottle to grab samples at the top, middle, and bottom of the tank | Solid Waste, Physical/Chemical Methods, EPA-SW-846 | | WASTE
STREAM
NUMBER
082 | MASTE Mixed acids (nitric acid, hydrofluoric acid, sulfuric acid, hydro- chloric acid, phosphoric acid, chromic acid) | EPA WASTE IDENTIFICATION NUMBER D002 | pH; specific gravity; inorganic sulfates; inorganic nitrates; inorganic chlorides; inorganic fluorides; inorganic phosphates; % chromic acid | Samplers and Sampling Pro- cedures for Hazardous Waste Streams, EPA-600/ 2-80-018, Pages 36 and 38 | DESCRIPTION OF SAMPLING A representative sample from a drum or a tank less than four feet deep using a coliwasa, or a composite sample from a tank deeper than four feet using a weighted bottle to grab samples at the top middle, and bottom of the tank | | |----------------------------------|--|--------------------------------------|--|--|---|---| | 091 | Miscellaneous
acid sludges | D002 | рН | Samplers and Sampling Procedures for Hazardous Waste Streams, EPA-600/ 2-80-018, Pages 36 and 38 | A representative sample from a drum or a tank, using a Trier scoop | Test Methods for
the Evaluation of
Solid Waste,
Physical/Chemical
Methods, EPA-SW-846 | | 092 | Miscellaneous
acid sludges | D002, D007 | рН | Samplers and Sampling Pro- cedures for Hazardous Waste Streams, EPA-600/ 2-80-018, Pages 36 and 38 | A representative sample from a drum or tank, using a Trier scoop | Test Methods for the Evaluation of Solid Waste, Physical/Chemical Methods, EPA-SW-846 | | WASTE
STREAM
NUMBER | HAZARDOUS
WASTE | EPA WASTE IDENTIFICATION NUMBER | FINGERPRINT
ANALYSIS | SAMPLING
METHOD | DESCRIPTION OF SAMPLING | REFERENCE
FOR SAMPLER | |---------------------------|--|---------------------------------|-------------------------|--|--|---| | NUMBER
097 | Waste cyanide solution from gold etching | F009 | pH; cyanide | Samplers and Sampling Pro- cedures for Hazardous Waste Streams, EPA-600/ 2-80-018, Pages 36 and 38 | A representative sample from a drum or a tank less than four feet deep using a coliwasa, or a composite sample from a tank deeper than four feet using a weighted bottle to grab | Test Methods for the Evaluation of Solid Waste, Physical/Chemical Methods, EPA-SW-846 | | | | | | | samples at the top
middle, and bottom
of the tank | , | LAST OPDATE OF HWDMS; 29MAR90 INSPECTOR...... INSPECTION DATE(DDMAMAYY) ## PLEASE CROSS OUT ANY INCORRECT INFORMATION AND WRITE IN CORRECTIONS. OF PARTICULAR INTEREST ARE THE PROCESS CODES EPA ID NUM; MOD000818963 FAC NAME: MCDONNELL AIRCRAFT CO TRACT I CONTACT NAME: PATTERSON JEROME SUPERVIS FAC STREET; MCDONNELL BLVD AT LINDBERGH FAC CITY: HAZELWOOD FAC PHONE: 3142323319 OPERATOR NAME: MCDONNELL AIRCRAFT COMPANY MAIL STREET; P.O. BOX 516 DEPT. 1910 MAIL CITY; ST LOUIS MAIL STATE; MO MAIL ZIP CODE: 63166 no process codes giver dien plans MASTE WASTE 3-FAC STATE; MO FAC 7IP CODE: 63042 PERMIT STATUS (C1105); PERMIT ISSUED TSD UNIVERSE CLASSIFICATION (C305); TREATMENT/STORAGE FACILITY ACTIVITIES; TRAN, TSD, GEN(>1000 KG/MO) BURNER ADD ---PROCESS - DESIGN CAPACITY - UNITS - VERIFICATION CODE CODE CODE **#S01-**67920.000 -G U #S02-160000.000 -G U #S03--*WASTE CODE - QUANITY OF WASTE IN 1000 KILOGRAM/YR - CODES FOR PROCEES USED TO HANDLE WASTE-¥D002- 2028.499 **#D**001-664.070 -S01, S02, - SO2, **≠**D003--S03, *D004-**>DOO**6-#B007-¥0008-***DOO9**-**₽**0010-F001-*F002-₩F003-VE005= *F006-5196.442 *F009--S02. *P030-₩F019-*****₱106-***U122-***U188-¥U223- DO40 D035 **₩226-**